Title |
Professor |
Laboratory Address |
Funako 1737, Atsugi, Kanagawa, Japan |
Contact information |
|
External Link |
|
KURAMOTO Takashi Professor |
From Graduate School 【 display / non-display 】
-
Kyoto University Graduate School, Division of Medicine Doctor Course Accomplished credits for doctoral program
1993.04 - 1997.03
Country:Japan
-
Kyoto University Graduate School, Division of Agriculture Master Course Completed
1990.04 - 1992.03
Country:Japan
Employment Record in Research 【 display / non-display 】
-
Tokyo University of Agriculture Faculty of Agriculture Department of Animal Science Professor
2018.04
Research Interests 【 display / non-display 】
-
experimental animals
-
rat
-
disease model
-
polled gene
-
A2 milk
Papers 【 display / non-display 】
-
The rat Downunder (<i>Du</i>) coat color mutation is associated with eye anomalies and embryonic lethality and maps to a 3.9-Mb region on chromosome 3
HIEU Hoang Trung, TANAKA Miyuu, KUWAMURA Mitsuru, MASHIMO Tomoji, SERIKAWA Tadao, KURAMOTO Takashi
Experimental Animals advpub ( 0 ) 2022
Language:English Publisher:Japanese Association for Laboratory Animal Science
<p>Rodent coat color genes have been studied as a bioresource to understand developmental and cellular processes. The Downunder rat is a fancy variety with a marking on its belly that runs from the neck to the breech and appears to mirror the dorsal hooded marking. Here, we established a congenic strain carrying the Downunder (<i>Du</i>) gene in an F344 genetic background. In addition to the ventral marking, <i>Du</i>/+ rats exhibit anophthalmia or microphthalmia with incomplete penetrance. <i>Du</i>/<i>Du</i> embryos die in the early stages of organogenesis. Genetic linkage analysis mapped the <i>Du</i> gene to rat chromosome 3 and haplotype mapping with congenic rats localized the <i>Du</i> locus to a 3.9-Mb region. The <i>Du</i> locus includes two functional genes, glycosyltransferase-like domain-containing 1 (<i>Gtdc1</i>) and zinc finger E-box binding homeobox 2 (<i>Zeb2</i>). Although we found no functional variation within any of <i>Zeb2</i>’s exons or intron-exon boundaries, <i>Zeb2</i> mRNA levels were significantly lower in <i>Du</i>/+ rats compared with wild-type rats. It is known that melanocyte-specific <i>Zeb2</i> deletion results in the congenital loss of hair pigmentation in mice. Taken together, our results indicate that the <i>Du</i> mutation exerts pleiotropic effects on hair pigmentation, eye morphology, and development. Moreover, the <i>Zeb2</i> gene is a strong candidate for the <i>Du</i> mutation.</p>
-
Positional cloning of rat mutant genes reveals new functions of these genes
KURAMOTO Takashi
Experimental Animals advpub ( 0 ) 2022
Language:English Publisher:Japanese Association for Laboratory Animal Science
<p>The laboratory rat (<i>Rattus norvegicus</i>) is a key model organism for biomedical research. Rats can be subjected to strict genetic and environmental controls. The rat’s large body size is suitable for both surgical operations and repeated measurements of physiological parameters. These advantages have led to the development of numerous rat models for genetic diseases. Forward genetics is a proven approach for identifying the causative genes of these disease models but requires genome resources including genetic markers and genome sequences. Over the last few decades, rat genome resources have been developed and deposited in bioresource centers, which have enabled us to perform positional cloning in rats. To date, more than 100 disease-related genes have been identified by positional cloning. Since some disease models are more accessible in rats than mice, the identification of causative genes in these models has sometimes led to the discovery of novel functions of genes. As before, various mutant rats are also expected to be discovered and developed as disease models in the future. Thus, the forward genetics continues to be an important approach to find genes involved in disease phenotypes in rats. In this review, I provide an overview the development of rat genome resources and describe examples of positional cloning in rats in which novel gene functions have been identified.</p>
-
Deficiency of the RIβ subunit of protein kinase A causes body tremor and impaired fear conditioning memory in rats Reviewed International journal
Hoang Trung H, Yoshihara T, Nakao A, Hayashida K, Hirata Y, Shirasuna K, Kuwamura M, Nakagawa Y, Kaneko T, Mori Y, Asano M, Kuramoto T
Sci Rep 11 2039 2021.02
Authorship:Corresponding author Language:English Publishing type:Research paper (scientific journal)
-
Genetic polymorphism of bovine beta-casein gene in Japanese dairy farm herds Reviewed
Yamada A, Sugimura M, Kuramoto T
Anim Sci J 92 ( 1 ) e13644 2021
Authorship:Corresponding author Language:English Publishing type:Research paper (scientific journal)
DOI: 10.1111/asj.13644.
-
PHF24 is expressed in the inhibitory interneurons in rats Reviewed
Numakura Yuki, Uemura Risa, Tanaka Miyuu, Izawa Takeshi, Yamate Jyoji, Kuramoto Takashi, Kaneko Takehito, Mashimo Tomoji, Yamamoto Takashi, Serikawa Tadao, Kuwamura Mitsuru
Experimental Animals 70 ( 1 ) 137 - 143 2021
Language:English Publishing type:Research paper (scientific journal) Publisher:Japanese Association for Laboratory Animal Science
<p> Noda epileptic rat (NER) is a mutant model for epilepsy that exhibits spontaneous generalized tonic-clonic seizure. Epileptogenesis of NER remains to be elucidated; but it is detected an insertion of an endogenous retrovirus sequence in intron 2 of the PHD finger protein 24 (<i>Phf24</i>) gene, encoding Gαi-interacting protein (GINIP). <i>Phf24</i> is a strong candidate gene for epileptogenesis in NER. PHF24 modulates GABA<sub>B</sub> signaling through interacting with Gαi protein. To clarify the epileptogenesis of NER, we investigated a distribution of PHF24-expressing cells in the central nerve system (CNS). While broad expression of PHF24 was observed in the CNS, characteristic expression was noted in the periglomerular layer of the olfactory bulb and the lamina II of the spinal cord in the control rats. These cells showed co-expression with calbindin or calretinin, inhibitory interneuron markers. In the olfactory bulb, 15.6% and 41.2% of PHF24-positive neurons co-expressed calbindin and calretinin, respectively. Immunoelectron microscopy revealed that PHF24 was located in the presynaptic terminals, synaptic membranes and cytoplasmic matrix of neuronal soma. Our data suggested PHF24 is expressed in the inhibitory interneurons and may play important roles in modulation of the GABA<sub>B</sub> signaling.</p>
Books and Other Publications 【 display / non-display 】
-
Basic Laboratory Animal Science and Technology, Expanded and Revised Edition
( Role: Joint editor)
2021.04
Language:Japanese Book type:Scholarly book
-
Advanced Laboratory Animal Science and Technology, Expanded and Revised Edition
( Role: Joint editor)
2021.04
Language:Japanese Book type:Scholarly book
-
特集 実験動物としてのラットの有用性 連載にあたって LABIO21 No.78: p12
庫本高志( Role: Sole author)
日本実験動物協会 2019.10
Language:Japanese Book type:Scholarly book
-
獣医学教育モデル・コア・カリキュラム準拠 実験動物学(第2版),久和茂 編 「4章 実験動物の遺伝」
庫本髙志( Role: Sole author)
朝倉書店 2018.03
Language:Japanese Book type:Textbook, survey, introduction
実験動物の遺伝学に関する教科書。
-
色素細胞 第2版 基礎から臨床へ,伊藤祥輔、柴原茂樹、錦織千佳子 編 「ネズミの毛色発現に関与する遺伝子]
庫本高志、山本博章( Role: Joint author)
慶應義塾大学出版会 2015.08
Language:Japanese Book type:Scholarly book
マウスとラットの毛色の発現に関与する遺伝子を紹介し、その利用法について記載した。
Honours, Awards and Prizes 【 display / non-display 】
-
公益社団法人 日本実験動物学会 学会賞安東・田嶋賞
2022.05
Award type:International academic award (Japan or overseas) Country:Japan
Presentations 【 display / non-display 】
-
Enhanced sensitivity of epileptic seizure by deficit of hyperpolarization activated cyclic nucleotide-gated (HCN) channel 1
Shimizu Saki, Ishizaki Yuto, Hattori Tatsuya, Kotaru Yuki, Mishio Sara, Kuramoto Takashi, Ohno Yukihiro
Proceedings for Annual Meeting of The Japanese Pharmacological Society 2022 Proceedings for Annual Meeting of The Japanese Pharmacological Society
Event date: 2022
Language:Japanese Presentation type:Oral presentation (general)
<p>Hyperpolarization activated cyclic nucleotide-gated (HCN) channels underlie hyperpolarization-activated current (<i>I</i><sub>h</sub>) generation, regulating spontaneous rhythm and neural oscillation. HCN1 channels are abundantly expressed in the cerebral cortex, hippocampus and brain stem and are suggested to be involved in the initiation and propagation of spontaneous generalized seizure, however, the functional mechanism is still unknown. In this study, to clarify the role of HCN1 channel in induction of epileptic seizure, we performed the chemically- and electrically-induced seizure tests using <i>Hcn1</i> knock-out (<i>Hcn1</i>-KO) rats. Pilocarpine and 4-aminopyridine produced significantly higher seizure induction in<i> Hcn1</i>-KO rats than in control (F344) rats. <i>Hcn1</i>-KO rats also showed higher sensitivity to electrical shock-induced seizures. In addition, we performed the immunohistochemical analysis of c-Fos expression following electrical shock-induced seizures. <i>Hcn1</i>-KO rats showed a significantly higher Fos expression than control rats in the cerebral cortex and amygdala. These results suggest that HCN1 channels play a crucial role in controlling the susceptibility to epileptic seizure, implying that hyperactivation of the cerebral cortex and amygdala is involved in the enhancement of seizure susceptibility due to loss of HCN1 channel.</p>
-
The 3rd Term of the National BioResource Project-Rat in Japan Invited International conference
Kaneko T, Tanaka M, Taketsuru H, Voigt B, Neoda Y, Hagiwara K, Cui Z, Nakagawa Y, Nagao T, Nakanishi S, Yamasaki K, Kuramoto T
The 8th ANRRC Internatinal Meeting 2016.09 ANRRC(Asian Network of Research Resource Center)
Event date: 2016.09
Language:English Presentation type:Oral presentation (invited, special)
Venue:Shiran Kaikan, Kyoto University, Kyoto, Japan
アジアのバイオリソース関連機関の集会において、ナショナルバイオリソースプロジェクト「ラット」を紹介した。
-
アトピー性皮膚炎モデルラットの治療試験
庫本高志、横江繭子、西谷あい、日合 弘、椛島健治
第63回日本実験動物学会 2016.05 日本実験動物学会
Event date: 2016.05
Language:Japanese Presentation type:Oral presentation (general)
Venue:ミューザ川崎シンフォニーホール(川崎市幸区)
アトピー性皮膚炎モデルラットを用いた皮膚炎の治療試験を報告した。
-
TRM/Kyoラットにおける本態性振戦の原因遺伝子の解明
西谷あい、田中美有、清水佐紀、國澤直史、横江繭子、吉田裕作、鈴木登志郎、佐久間哲史、山本 卓、桑村 充、竹中重雄、大野行弘、庫本高志
第63回日本実験動物学会 2016.05 日本実験動物学会
Event date: 2016.05
Language:Japanese Presentation type:Oral presentation (general)
Venue:ミューザ川崎シンフォニーホール(川崎市幸区)
ラットモデルを用いて本態性振戦の原因遺伝子を同定した。
-
新たなアトピー性皮膚炎モデルの開発
庫本高志、横江繭子、由利 梓、西谷あい、田中大資、日合 弘、芹川忠夫
第62回日本実験動物学会 2015.05 日本実験動物学会
Event date: 2015.05
Language:Japanese Presentation type:Oral presentation (general)
Venue:京都テルサ(京都市南区)
KFRS4ラットをアトピー性皮膚炎モデルとして開発した。
Committee Memberships 【 display / non-display 】
-
日本実験動物学会 理事
2016.05 - 2022.05
Committee type:Academic society
-
日本実験動物学会 評議員
2014.05
Committee type:Academic society